Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Microbiol ; 12: 661509, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262538

RESUMO

The composition and metabolic functions of oral microbiota are affected by many factors including smoking leading to several health problems. Cigarette smoking is associated with changes in oral microbiota composition and function. However, it is not known if the depletion of certain bacterial genera and species is due to specific toxins in cigarette smoke, or indirectly due to competition for colonization with smoking-enriched bacteria. Therefore, the aim of this study was to determine the effect of cigarette smoking on the microbial prevalence and polycyclic aromatic hydrocarbons (PAHs) biodegradation of selected enriched and depleted oral bacteria from oral microbiota of smokers compared to that in non-smokers. Samples of oral rinse from smokers and non-smokers were collected (n = 23, 12 smokers and 11 non-smokers) and screened for oral bacterial strains of Streptococcus mutans, Lactobacillus spp., and Veillonella spp. Comparing counts, S. mutans, V. tobetsuensis, and V. dispar showed higher counts in smokers compared to non-smokers while the Lactobacillus spp. were higher in non-smokers. Lactobacillus fermentum was prevalent in smokers, representing 91.67% of the total Lactobacillus spp. isolates. The biodegradation potential of anthracene; a representative of PAHs of collected isolates, in single and mixed cultures, was assayed with anthracene as the sole source of carbon using 2,6-dichlorophenol indophenol (2,6-DCPIP) as indicator. S. mutans isolates recovered from smokers showed higher degradation of anthracene compared to those recovered from non-smokers. The anaerobic anthracene biodegradation activity of V. parvula isolates from non-smokers was the highest among all isolates of the three recovered genera from the same subject. The anthracene biodegradation potential of Lactobacillus spp. was variable. Combinations of isolated bacteria in co-cultures showed that Lactobacillus spp. interfered with anthracene biodegradation ability along with the viable counts of S. mutans and Veillonella spp. In conclusion, oral dysbiosis due to cigarette smoking was observed not only due to changes in oral bacterial relative abundance but also extended to bacterial functions such as anthracene biodegradation tested in this study. Microbe-microbe interactions changed the anthracene biodegradation potential and growth of the microbial mixture compared to their corresponding single isolates, and these changes differ according to the constituting bacteria.

2.
Microb Ecol ; 82(2): 288-298, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33420624

RESUMO

Assessing microbial identity, diversity, and community structure could be a valuable tool for monitoring the impact of xenobiotics and anthropogenic inputs in rivers, especially in urban and industrial settings. Here, we characterize the Nile River microbial community in water and sediments in summer and winter at five locations that span its natural flow through the Cairo metropolis. 16S rRNA gene datasets were analyzed to identify the role played by sample type (sediment versus water), season, and location in shaping the community, as well as to predict functional potential of the Nile River microbiome. Microbial communities were mostly influenced by sampling type (sediments versus water), while seasonal effects were only observed in water samples. Spatial differences did not represent a significant factor in shaping the community in either summer or winter seasons. Proteobacteria was the most abundant phylum in both water and sediment samples, with the order Betaproteobacteriales being the abundant one. Chloroflexi and Bacteroidetes were also prevalent in sediment samples, while Cyanobacteria and Actinobacteria were abundant in water samples. The linear discriminative analysis effect size (LEfSe) identified the cyanobacterial genus Cyanobium PCC-6307 as the main variable between summer and winter water. Sequences representing human and animal potential pathogens, as well as toxin-producing Cyanobacteria, were identified in low abundance within the Nile microbiome. Functionally predicted metabolic pathways predicted the presence of antibiotic biosynthesis, as well as aerobic xenobiotic degradation pathways in the river microbiome.


Assuntos
Cianobactérias , Microbiota , Animais , Sedimentos Geológicos , Humanos , RNA Ribossômico 16S/genética , Rios , Análise Espaço-Temporal , Água
3.
Sci Total Environ ; 677: 120-130, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31055095

RESUMO

Nowadays, due to worldwide water shortage, water utilities are forced to re-evaluate treated wastewater. Consequently, wastewater treatment plants need to conduct biomonitoring. Coking wastewater (CWW) has toxic, mutative and carcinogenic components with threatening effect on the environment. CWW was selected as a model for complex highly toxic industrial wastewater that should be treated. CWW from Egypt was treated in a nine-liter photobioreactor using an algal-bacterial system. The photobioreactor was operated for 154 days changing different parameters (toxic load and light duration) for optimization. Optimized conditions achieved significant reduction (45%) in the operation cost. The algal-bacterial system was monitored using chemical assays (chemical oxygen demand and phenol analysis), bioassays (phytotoxicity, Artemia-toxicity, cytotoxicity, algal-bacterial ratio and settleability) and Illumina-MiSeq sequencing of 16S rRNA gene. The algal-bacterial system detoxified (in terms of phytotoxicity, cytotoxicity and Artemia-toxicity) CWW introduced as influent through all phases. A significant difference was recorded in the microbial diversity between influent and effluent samples. Four phyla dominated influent samples; Proteobacteria (77%), Firmicutes (11%), Bacteroidetes (5%) and Deferribacteres (3%) compared to only two in effluent samples; Proteobacteria (66%) and Bacteroidetes (26%). The significant relative-abundance of versatile aromatic degraders (Comamonadaceae and Pseudomonadaceae families) in influent samples conformed to the nature of CWW. Microbial community shifted and promoted the activity of catabolically versatile and xenobiotics degrading families (Chitinophagaceae and Xanthomonadaceae). Co-culture of microalgae had a positive effect on the biodegrading bacteria that was reflected by enhanced treatment efficiency, significant increase in relative abundance of bacterial genera with cyanide-decomposing potential and negative effect on waterborne pathogens.


Assuntos
Bactérias/metabolismo , Chlorella vulgaris/metabolismo , Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental/métodos , Águas Residuárias/análise , Águas Residuárias/microbiologia , Coque , Egito , Microalgas/metabolismo , Microbiota , Poluentes Químicos da Água/análise , Poluição Química da Água/prevenção & controle
4.
OMICS ; 22(8): 553-564, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30106354

RESUMO

World freshwater supplies are in need of microbiome diversity analyses as a first step to future ecological studies, and to monitor water safety and quality. The Nile is a major north-flowing river in Africa that displays both spatial and temporal variations in its water quality. Here, we present the first microbiome analysis of the Nile River water in two seasons: (1) summer representing the wet season, and (2) winter representing the dry season, as sampled around Cairo, the capital of Egypt. Surface river water samples were collected from selected locations along the path of river, and the microbial composition was analyzed by next-generation sequencing of the 16S rRNA gene. We found a striking stability in the Nile microbiome community structure along the examined geographical urban sites and between the wet and dry seasons as evidenced by the high proportion of shared operational taxonomic unit values among all samples. The community was dominated by the Cyanobacteria (mainly Synechococcus), Actinobacteria candidate family (ACK-M1), and Proteobacteria (mainly family Comamonadaceae). Among these dominant taxa, Synechococcus exhibited seasonal driven variation in relative abundance. Other taxa were predominantly rare across all seasons and locations, including genera members of which have been implicated as pathogens such as Acinetobacter, Aeromonas, and Legionella. In addition, comparisons with data on freshwater microbiome in other world regions suggest that surface water communities in large rivers exhibit limited variation. Our results offer the first insights on microbial composition in one of the most notable rivers near a large metropolis.


Assuntos
Rios , Estações do Ano , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Aeromonas/genética , Aeromonas/isolamento & purificação , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Egito , Legionella/genética , Legionella/isolamento & purificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética
5.
Braz J Microbiol ; 49 Suppl 1: 1-8, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29631893

RESUMO

In this study, the development and assessment of a modified, efficient, and cost-efficient protocol for mDNA (metagenomic DNA) extraction from contaminated water samples was attempted. The efficiency of the developed protocol was investigated in comparison to a well-established commercial kit (Epicentre, Metagenomic DNA Isolation Kit for Water). The comparison was in terms of degree of shearing, yield, purity, duration, suitability for polymerase chain reaction and next-generation sequencing in addition to the quality of next-generation sequencing data. The DNA yield obtained from the developed protocol was 2.6 folds higher than that of the commercial kit. No significant difference in the alpha (Observed species, Chao1, Simpson and PD whole tree) and beta diversity was found between the DNA samples extracted by the commercial kit and the developed protocol. The number of high-quality sequences of the samples extracted by the developed method was 20% higher than those obtained by the samples processed by the kit. The developed economic protocol successfully yielded high-quality pure mDNA compatible with complex molecular applications. Thus we propose the developed protocol as a gold standard for future metagenomic studies investigating a large number of samples.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Bactérias/isolamento & purificação , DNA Bacteriano/isolamento & purificação , Água Doce/microbiologia , Metagenômica/economia , Metagenômica/métodos , Métodos Analíticos de Preparação de Amostras/economia , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Água Doce/química , Filogenia , Análise de Sequência de DNA
6.
Braz. j. microbiol ; 49(supl.1): 1-8, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-974334

RESUMO

Abstract In this study, the development and assessment of a modified, efficient, and cost-efficient protocol for mDNA (metagenomic DNA) extraction from contaminated water samples was attempted. The efficiency of the developed protocol was investigated in comparison to a well-established commercial kit (Epicentre, Metagenomic DNA Isolation Kit for Water). The comparison was in terms of degree of shearing, yield, purity, duration, suitability for polymerase chain reaction and next-generation sequencing in addition to the quality of next-generation sequencing data. The DNA yield obtained from the developed protocol was 2.6 folds higher than that of the commercial kit. No significant difference in the alpha (Observed species, Chao1, Simpson and PD whole tree) and beta diversity was found between the DNA samples extracted by the commercial kit and the developed protocol. The number of high-quality sequences of the samples extracted by the developed method was 20% higher than those obtained by the samples processed by the kit. The developed economic protocol successfully yielded high-quality pure mDNA compatible with complex molecular applications. Thus we propose the developed protocol as a gold standard for future metagenomic studies investigating a large number of samples.


Assuntos
Bactérias/isolamento & purificação , DNA Bacteriano/isolamento & purificação , Métodos Analíticos de Preparação de Amostras/métodos , Metagenômica/economia , Metagenômica/métodos , Água Doce/microbiologia , Filogenia , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Métodos Analíticos de Preparação de Amostras/economia , Água Doce/química
7.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469634

RESUMO

Abstract In this study, the development and assessment of a modified, efficient, and cost-efficient protocol for mDNA (metagenomic DNA) extraction from contaminated water samples was attempted. The efficiency of the developed protocol was investigated in comparison to a well-established commercial kit (Epicentre, Metagenomic DNA Isolation Kit for Water). The comparison was in terms of degree of shearing, yield, purity, duration, suitability for polymerase chain reaction and next-generation sequencing in addition to the quality of next-generation sequencing data. The DNA yield obtained from the developed protocol was 2.6 folds higher than that of the commercial kit. No significant difference in the alpha (Observed species, Chao1, Simpson and PD whole tree) and beta diversity was found between the DNA samples extracted by the commercial kit and the developed protocol. The number of high-quality sequences of the samples extracted by the developed method was 20% higher than those obtained by the samples processed by the kit. The developed economic protocol successfully yielded high-quality pure mDNA compatible with complex molecular applications. Thus we propose the developed protocol as a gold standard for future metagenomic studies investigating a large number of samples.

8.
Appl Biochem Biotechnol ; 183(1): 189-199, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28236193

RESUMO

A halophilic cellulase-producing bacterium was isolated from a sediment sample collected from Lake Qarun (Fayoum Province, Egypt). Molecular identification based on 16S rDNA amplification and sequencing revealed 99% homology with Halobacillus sp. and hence was designated as Halobacillus sp. QLS 31. Medium composition and culture conditions were optimized for enhancing the production of cellulase enzyme using the Plackett-Burman statistical design. Ten variables were evaluated for their influence on cellulase production. Carboxymethyl cellulose (CMC), zinc sulfate (ZnSO4), and inoculum size were found to exert a significant effect on cellulase productivity by Halobacillus sp. QLS 31. The maximum specific activity of cellulase enzyme was 48.08 U/mg. Following the predicted conditions, a 7.5-fold increase in cellulase specific activity (175.47 U/mg) was achieved compared to the basal medium (23.19 U/mg) under the following optimized conditions: temperature (30 °C), fermentation time (2 days ), pH value (9), CMC concentration (1%), inoculum size (1%), yeast extract concentration (0.1%), ammonium sulfate ((NH3)2SO4) concentration (0.1%), sodium chloride (NaCl) concentration (20%), and metal inducers: ZnSO4 (0.1%) and Ca/Mg ratio (0.01%). Thus, the results of this study provide an important basis for more efficient, cheap industrial cellulase production from halophilic Halobacillus sp. QLS 31.


Assuntos
Proteínas de Bactérias/biossíntese , Celulases/biossíntese , Halobacillus , Lagos/microbiologia , Microbiologia da Água , Proteínas de Bactérias/genética , Celulases/genética , Egito , Halobacillus/enzimologia , Halobacillus/genética , Halobacillus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...